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Diffusion in liquids from a first-passage-time point of view
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A first-passage-time viewpoint is proposed and formulated as a tool to investigate diffusion in liquids.
Application of our theory to a soft-core system shows that a continuous-diffusion model reproduces the
observed first-passage-time distribution quite well for liquids in equilibrium and moderately supercooled
states. Under a considerable degree of supercooling we find qualitatively different diffusion behavior
reflected in the first-passage-time distribution, which cannot be explained by a continuous-diffusion mod-
el. Some models, which take into account effects of hopping, are discussed to reveal the diffusion mecha-

nism in highly supercooled liquids.

PACS number(s): 66.10.—x, 61.20.Ja, 61.20.Lc, 05.40.+j

I. INTRODUCTION

Recently slow dynamics in liquids has gathered a lot of
attention in connection with a glass and a freezing transi-
tion [1,2]. Since slow dynamics is mainly related to
particle-diffusion processes, it is of considerable interest
to study diffusion mechanisms in dense liquids.

In studies on self-diffusion in liquids molecular-
dynamics simulations have been playing an important
role [3,4]. They give the most detailed information on
single-particle motion, such as the mean-square displace-
ment R*(t), the velocity autocorrelation function (1),
and the self part of the Van Hove correlation function
G,(r,t) [5,6]. It is well known that the self-diffusion con-
stant D is given by one of the following equations:

D= lim R%(t)/(6t) , (1
t— 0
. t
D= lim [ dt (1), 2)
D =lim limw?S,(q,0)/q? , 3)

0—0g—0

where S;(gq,w), the self-part of the Van Hove dynamical
structure factor, is the Fourier transform of the G,(r,z?).
We note that these relations involve the limiting pro-
cedure t — o or w—0. In practice, in order to obtain a
reliable estimate of D we have to calculate ¢(¢) and R *(¢)
up to t =t,, which satisfies ¢, >t with ¢, denoting
the (longest) relaxation time in the system of interest.
The diffusion constant D decreases as the temperature T'
(density n) of a liquid decreases (increases) and when D
becomes as small as 1077 cm?/s, neither of the equations
above could be used reliably to calculate D based on the
molecular-dynamics data, since in this supercooled region
t. exceeds the typical simulation time ¢, ~10"1°-107"
s [5]. In other words, the ¢(¢) does not relax to zero or
the R 2(¢) does not take its asymptotic form linear in ¢ for
t<t.y.

Under these circumstances, we propose in this paper a
first-passage-time (FPT) approach to diffusion in liquids,
which is useful in extracting aspects of single-particle
motion from molecular-dynamics-simulation data (Sec.
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II). From the FPT analysis of our molecular-dynamics
simulations it turns out that a simple continuous-
diffusion model gives an adequate description of single-
particle motion for liquids in equilibrium and moderately
supercooled states, occurring in the length scale [ =20
where o denotes the characteristic interaction range [see
Eq. (13)] (Sec. III). In a liquid which is mostly super-
cooled among the states attainable in our simulations, it
turns out that the continuous-diffusion model is no longer
capable of describing single-particle motion. From this
fact and the snapshots of the particle configuration, we
are led to consider some models that take the effects of
particle hopping into consideration. Theoretical and nu-
merical (simulation) results on the FPT distribution are
used to discuss general features of the hopping diffusion
models and their implications on diffusion in the highly
supercooled liquids (Sec. IV). Concluding remarks are
given in the final section (Sec. V).

II. THE FPT PROBLEM
AND THE CONTINUOUS-DIFFUSION MODEL

We consider the following FPT problem in connection
with particle diffusion in liquids [7,8]: In a liquid we pay
attention to a particle, which is located at r, at the time
of observation t,, and imagine a sphere S(/;ry) with ra-
dius / centered at r,. Then tracing the trajectory of the
particle we record the time ¢ +¢, at which the trajectory
crosses S (/;r,) for the first time. The time ¢ is the FPT
in our problem and after many repetitions of the experi-
ment we have a histogram of ¢, which is called the FPT
distribution, hereafter denoted by Py (¢;/). This is nor-
malized as

fo“’dt Pyp(t;D=1. )

The subscript “MD” indicates that this quantity is ob-
tainable only via molecular-dynamics simulations.

Two characteristics of Pyp(?;/) are worth mentioning.
First, one can determine Pyp(f;/) in a time range
0<t<ty,. If a sample trajectory does not cross the
sphere within the observation time ¢_,, the sample con-

4076 ©1993 The American Physical Society



47 DIFFUSION IN LIQUIDS FROM A FIRST-PASSAGE-TIME . ..

tributes to pyp(t;l) for ¢t >¢_,. By increasing a particle
number contained in a simulated system, we can achieve
good statistics. Second, let us consider the role played by
the radius I. If we set / to be small, Py, would reflect
small thermal vibrations of particles, which is not
relevant to diffusion. On the other hand, if / is too large,
we are sure to observe no crossing events within ¢ .
Thus we have to choose / in such a way so that we could
obtain information relevant to diffusion with high relia-
bility (statistics). In this sense / plays the role of a filter to
select useful information.

Once Pyp(t;l) is obtained, it can be used as follows:
Based on a theoretical model one can calculate, either
analytically or numerically, the FPT distribution
P, (t;1; M) with the subscript “th” meaning that it is
based on a theoretical model and M denoting collectively
all the parameters which characterize the model. By
comparing Pyp with P, we cannot only gain some in-
sights on diffusion mechanisms but also, under favorable
conditions, determine M which gives the best fit of P to
Pyp-

We now turn to the mathematical aspects of the FPT
problem [7,8]. Let the distribution function P(r,?) ex-
press the probability density of finding a particle at a
space-time point (r,z). In a theoretical model it is as-
sumed that P(r,t) evolves in time according to

3P
ot

where M in the operator L (M) denotes parameters in the
model. In order to calculate P, (¢;/; M) one first solves
Eq. (5) under the following initial and boundary condi-
tions:

P(r,t=0)=6(r) , 6)
P(r,t)=0 for|r|>1. (7

=L(M)P , (5)

Then the desired P, (¢;];m) is obtained from

Py (t;1;M)=— Jdr Py, (8)

d
dt
where the integral on the right-hand side (rhs) is per-
formed within the sphere of radius /. We note that if only
continuous trajectories are allowed (i.e., no hopping
events) in the model we only need to impose P(r,t)=0
for |r| =1 for the boundary condition.

In the remainder of this section we consider a
continuous-diffusion model

OP(r,t)

=DV?*P(r,t), 9)
ot

with D being the parameter in the model M. Since our
problem is isotropic we express Eq. (9) in polar coordi-
nates as

oP(r,t) _
ot

2
£+(2/r)a—P
ar

D
or?

’ (10)

and obtain, with use of the proper eigenvalue A,
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P(r,t)=3 (1/r){a(A)sin[rV'A/D ]
A

+b(A)cos[rV'A/D ]} exp{ —At} .
(1n

The cosine term should vanish [5(A)=0] in order to keep
P(r,t) finite at r =0. From the boundary condition (6)
we see that VA/D =nw/l(n=1,2,...) and the initial
condition (5) gives a(A)=n /(21?), leading with the aid of
Eq. (8) to

P, (t;1;D)=2D (7 /1)?

X 3 (—1)"*'n2exp{—(nm/1Dt} . (12)

n=1

Usually the sum in Eq. (12) up to n =100 is enough to
have a convergent value for P, .

III. THE FPT DISTRIBUTION
IN THE SOFT-CORE SYSTEM

We consider the FPT distribution in the soft-core sys-
tem with the interparticle potential [5,9]

o(r)=elo/r)" (n=12). (13)

Our system, containing N =500 particles in a fixed
volume V, is simulated by a constant-energy molecular-
dynamics method [4]. We note that the system is ther-
modynamically characterized by one parameter p*,
defined by

p*=(Na*/V)e/kgT)'*, (14)

with kp denoting the Boltzmann constant and the freez-
ing and the glass transition points are reported to be
pf=1.15 and p; =1.56, respectively [9].

It is sometimes convenient to choose an argon atom as
the particle in our model and take e=480 K, 0 =3.4 A,
and m =6.63X1072* g as units of energy, length, and
mass, respectively. This enables us to express D and T in
units of cm?/s and K, respectively, and the time mesh in
our numerical integration scheme corresponds to
7.78X10™ Vs,

Five runs [run (1) to run (5)] are performed with a
quench rate ¢ =6.27 X 10'! K/s for runs (3) and (4) and
qg=1.25%X10"" K/s for run (5) (see Table I). Among
these we show results of our simulations for runs (1), (4),
and (5), with a remark that simulation results in run (2)

TABLE 1. Five runs in our simulations.

Run p* T [K] D (cm?/s)
(1) 1.023 95.1 2.75%X1073
2) 1.094 82.8 1.76 X107°
(3) 1.19 51.5 8.97X 107
(4) 1.26 41.5 5.66X 1076
(5) 1.35 31.7 1.04Xx 1077
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for a liquid near the freezing point and run (3) for a
slightly supercooled liquid are excellently reproduced by
the continuous-diffusion model, Eq. (9), for / = 2¢.

Figure 1 shows the FPT distribution Pyp(t;l) for
=20 (a), 2.50 (b), and 30 (c) together with the corre-
sponding P, (¢;l;D) (dashed curves). We notice that in
this relatively low-density system, we have to choose
rather large [ (= 2.50) to screen out diffusional behaviors.
For runs (2) and (3) / =20 is large enough to yield the ex-
perimental results Pyp(¢;/) and Dyp. The D values in
P, (t;1;D) are determined as follows: We first choose a
value W (0 < W < 1) for the weight and define ¢y, by

t
W= fo Ydt Pyp(t;1) . (15)

In Fig. 1 W is chosen to be 0.6 as indicated. D is deter-
mined by demanding

(a) D =0.93Dpq

IIII]IIII[IIIIIIIII

o

t
W= fo Ydt Py (t;1;D) . (16)

From Figs. 1(b) and 1(c) we note that single-particle dy-
namics occurring on the length scale />2.50 is ade-
quately described by a diffusion equation (9). Results for
run (4) are depicted in Fig. 2. Because of the smallness of
both the diffusion constant and the total weight obtained
by our simulations, we had to choose rather small W. In
this moderately supercooled liquid the continuous-
diffusion model is also seen to work well on the scale
[Z20. Figure 3 shows results (I =1.5¢) for a highly su-
percooled liquid with Dyp~10"7 cm?/s. Although the
calculated total weight W is small (0.013 for
Ly =1 =2X1071% 5), we notice qualitatively different
features in Pyp(¢;/) from those for runs (1)—(4). In this
case we cannot reproduce the Py, by any choice of D. If
we take D =6Dyp for an illustration purpose, we have a

XIOIO

D =0.97Dpg

D =0.99D 4

xIO-ll

FIG. 1. The FPT distribution Py (¢;/) for run (1). (a), (b), and (c) correspond to I /o0 =2, 2.5, and 3, respectively. The full and
dashed curves represent Pyp(2;1) and Py (t;l;D), respectively. The diffusion constant D from the continuous-diffusion model is
given as the ratio to the experimental result Dyp.
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dashed curve quite different from the experimental one.
From snapshots of the particle distribution in the system,
we observe that particles are sitting on some sites, oc-
casionally making hops to nearby (amorphous) sites.
Thus we must consider a model which takes the effects of
hopping into account as long as we are concerned with
dynamical events occurring on a length scale of a few o
and a time of 1071% or 1077 s, which we can access by the
molecular-dynamics method.

IV. HOPPING DIFFUSION MODELS
AND THEIR PROPERTIES

In this section we consider some hopping models for
which we obtain the FPT distribution by computer simu-
lations. In passing it is remarked, however, that some
models in this section can be treated analytically and
these points will be discussed elsewhere [10]. The hop-
ping model we consider is known as the continuous-time
random-walk (CTRW) model [11] described by

Xlolo
1.0

(a)p_ 1.02Dpmg
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oP(r,t)

o =f0'¢(t——t’)fdr’[W(rlr’)P(r’,t)
—W('|r)P(r,t)], (17)

where the ¢(¢) is related to a waiting-time distribution

Y(t) via
d(s)=sy(s)/[1—(s)],

where ¢(s) and ¥(s) denote the Laplace transforms of
¢(¢t) and Y(2), respectively [11,12]. The transition proba-
bility from r’ to r, W(r|r’), is taken to be

W(rlr')=8(|r—1'| —a)/(4ma?) ,

(18)

(19)

which is seen to be normalized to 1. The a in Eq. (19)
denotes the hopping length and //a becomes an impor-
tant parameter in our model. As is well known, if one
takes the exponential waiting-time distribution
Y(t)=exp(—t/t,)/t,, it holds that ¢(¢)=58(¢)/t, and Eq.
(17) reduces to an ordinary Markovian master equation

x10°
6

L (b) D=1.01Duq
5 [

0.0 0.2 O

FIG. 2. The FPT distribution Pyp(#;!) for run (4). The meaning of the figures is the same as in Fig. 1.
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x108

L D =6Dpq /

X 10-]0

t (s)

FIG. 3. The FPT distribution Pyp(z;/) for run (5) and
I/oc=1.5. The dashed curve is the result of the continuous-
diffusion model for D =6Dyp.

[7,13]. Instead of the exponential 1(¢), we consider the
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The delay time ¢; denotes the time necessary for the sur-
rounding particles to adjust themselves to allow for the
next hopping and ¢, is the average waiting time after the
adjustment. Putting t;,=0 we recover the Markovian
model. We note that the ratio ¢, /¢, is an important pa-
rameter, in addition to //a, in this model. One can also
introduce a probability distribution for ¢; as will be com-
mented on later in this section. The model above will be
collectively refered to as a hopping model without
Brownian motion (HMWOB) and the diffusion constant
of which is given by

DH=02/[6(td+th)] . (21)

Now we explain a hopping model with Brownian
motion (HMWB). We consider that a particle hops, as
described by Egs. (17)-(20), at time {¢;} (i=1,2,...)
and during the time ¢; <t <t;; (i =1,2,. . .) the particle
undergoes bounded Brownian movement [7,14] with the
center of attraction at R;, where the particle arrived at
time ¢;. With the origin of the coordinate set at R;, the
Langevin equation is given by

following ¥(¢): mi=—kr—mgi+F(1), (22a)
0 for t<t, (F(t)F)=2mCkyT8(t)I , (22b)
YO= lexpl —(1=2,)/2,1/ t, fort=t, . (200 here k and ¢ denote the spring constant and the fric-
0.18 T T T T T T T T T 0.18 T T
0.16 - (a) - 0.16 | ()
0.14 . 0.14
L o1z f . 0.12 |
:\ 0.1 . /\; 0.1 F
a o.08 | 4 Ef 0.08 F
0.06 J 0.06 |
0.00 | ] 0.04
0.02 . 0.02
0 | 1 1 1 1 1 1 1 1 0 1 1
o 1 2 3 4 5 6 7 8 9 10 o 2 4
t/Th
0.25 , . . : i :
(c)
0.2 | 4
< 05T 4
B? 0.1f 4
0.05 1
0 1 1 1 1 1
0 1 2 4 5 6 7 8

t/Th

FIG. 4. The FPT distribution based on the HMWOB [(a) ¢, /t, =1 and (b) t;/t, =3] and HMWB [(c) ¢,/t, =1, a;=0.2, and
Dy /Dg=0.1] obtained from computer simulations of hopping and Brownian processes.



tion, respectively, and I is the 3 X3 unit matrix. Since
heavy damping is assumed, Eq. (22a) is reduced to

i=—(0*/§r+F(1)/(m§) , (22a’)

with w?>=(k/m). The Fokker-Planck equation, which
corresponds to Eq. (22a’), is
dP(r,t)

—at—ZV-[(wz/g')rP]-i—DBVzP , (23)

with
Dy=kzT/(m§) . (24)

From Eq. (23) we readily see that the mean-square devia-
tion {r2) for large ¢ is given by 3kz T /(mw?). The Lin-
demann constant

a; =[{r?*)1"*/a (25)

characterizes the range of excursion of the Brownian par-
ticle around the center R;.

Hereafter we consider the case / /a =1.5 where at least
two hops are necessary for the FPT event to occur if
Brownian motion is not allowed. First we show P(t;])
for the HMWOB when ¢, and ¢, are comparable to each
other (tz;/t,=1 [Fig. 4(a)] and t,/t,=3 [Fig. 4(b)]).
When t; is larger than ¢, we see some peaks in P(t;/)
with the first (second) one coming from the two- (three-)
hop events. Since the distribution of t; is not allowed
here, it is clear that P(z;/) becomes nonzero only after
2t;. The effects of Brownian motion are shown in Fig.
4(c) where Brownian motion with a;=0.2 and
Dy /D =0.1 [see Egs. (21) and (24)] are superimposed on
the system shown in Fig. 4(a). The bump in the region
t, <t <2t, represents the contribution of the Brownian
motion which enables a particle to cross the sphere by
one hop.

Some general observations from our numerical simula-
tions of P(z;/ =1.5a) are noted in order: When ¢, is by
an order of magnitude larger than ¢, e.g., t; /t, ~30-50,
P (t;]) becomes very small in the range of a few ¢;, remin-
iscent of the small-time behavior depicted in Fig. 3. The
Lindemann constant, Eq. (25), is an important factor to
control effects of the Brownian motion. For example, if
we reduce a; from 0.2 to 0.1 we could see no clear con-
tribution to P(t;l/) from the Brownian motion in the
small-time region [see Fig. 4(c)]. Finally the effects of dis-
tribution in ¢; were investigated by giving an exponential
probability P(t;)=exp(—t,/{t;))/{t;) to t;, with
(t,) playing the role of ¢, in a previous fixed-z; model.
As expected, the steep slope near ¢t =2¢, in Figs. 4(a) and
4(b) becomes smooth and a sharp structure in Fig. 4(b)
becomes smeared.

V. CONCLUDING REMARKS

In this paper we proposed a FPT viewpoint to study
diffusion in liquids and applied it to a soft-core system.
Except for a highly supercooled liquid the continuous-
diffusion model works well to describe diffusion on the
scale [ = 20.

In concluding this paper we give two remarks concern-
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FIG. 5. The FPT distribution Pyp(2;/) for run (5) and
1/0=1.0.

ing diffusion in highly supercooled liquids. The first one
is related to Pyp(?;/) when [ is a little smaller than a
hopping length. In this case Pyp(z;/) is expected to
represent a waiting-time distribution (WTD) since one
hop is enough to cross a sphere. In Fig. 5 we show
Pyp(t;l =0) obtained for run (5). We notice that the
WTD has a long plateau, which reminds us of the as-
sumption of the algebraically slow decay (¢ “) of the
WTD employed to describe particle (exciton) diffusion in
supercooled or amorphous materials [15,11]. The second
remark is concerned with the recent work by Roux, Bar-
rat, and Hansen [16] on diffusion in supercooled liquids.
They showed through molecular-dynamics simulations
that there exists some (critical) density below (above)
which particle movement is dominated by a continuous-
(hopping) diffusion mechanism. Their conclusion is based
on a detailed analysis of the function rst(r,t) which de-

r2G(r, t)

FIG. 6. r2G,(r,1) of the HMWB with a; =0.2, 1,/t, =,
and Dy /Dy=0.1 for t/t;=0.94 (full line), 8.0 (long-dashed

line), 20.0 (short-dashed line), and 44.0 (dotted line).
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scribes how a particle put at the origin moves away in the
course of time. Based on the HMWB with a; =0.2,
ty/t, =2, and D/Dp=0.1 we also calculated r2G,(r,t),
which is shown in Fig. 6. A particle put at the origin is
seen to first equilibrate and then undergo hopping, giving
weight around 7 /a =1 and so on, and these behaviors are
precisely what were observed by Roux, Barrat, and Han-
sen. At the moment we are performing molecular-
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dynamics simulations of a two-component system, whose
data are to be analyzed based on the FPT viewpoint.
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